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Recently, ;l-Mn02 has been proposed as an alternative cathode to 
y/P-Mn02in Li/MnOz primary batteries [l]. One suggested advantage of 
&Mn02 over y/P-MnO, is its faster discharge rate at both room and low 
temperatures [ 11. For the MnO? cathode, its discharge rate I is a function 
of its lithium diffusivity D and particle size d: 

IaD/d . (1) 

Equation (1) shows that increasing lithium diffusivity and/or decreasing 
the particle size leads to an increase in the discharge rate. Equation (1) 
also shows that if two different materials of the same particle size have a 
difference in discharge rates for the same experimental conditions (i.e., 
electrolyte), this difference must result from the difference in their D 

values. In this note, my goal is to determine whether a switch from a 
y//3-MnO, cathode to a A-MnO, cathode causes an increase in the dis- 
charge rate in the Li/MnO, system, as a result of a difference in the 
diffusivity D of the two materials. This comparison is made at room 
temperature only, since no low-temperature data for D in y/P-MnO, or 
A-MnO, currently exist. 

Lithium diffusivity in y-Mn02 [2,3], P-Mn02 [3], and 1-Mn02 [4] at room 
temperature is plotted in figure 1. The figure includes, for ;l-MnO?, a data 
point at 3 x lo-” cm2/s (which was measured for LiMn204 [5]) and one at 
4 x 10-l* cm2/s (measured for L&Mn04 [6]). These two points are plotted 
for A.-Mn02 because Li,Mn204 has the same structure as ;l-Mn02 [7,8], and 
Guyomard and Tarascon [4] have shown that the diffusion coefficient of 
lithium in Li,Mn204 is independent of lithium composition x, for x from 
0 to 1. Thus, the D values shown in figure 1 for LiMn204 (X = 1) and 
Li0,4Mn04 (x = 0.4) should correspond to lithium diffusivity in &MnO:! 
(X = 0). The figure also includes lithium diffusivity values for y-Mn02 and 
P_Mn02 produced from acid digestion of LiMn204 (filled symbols) [3]. 

Figure 1 suggests several important points. First, D in y-MnO, is greater 
than D in fi-MnO, (about a factor of 5 higher, if we consider only the open 
symbols). This is expected because the number of (2 x 1) channels de- 
creases as the MnO, structure transforms from yto p [8-lo]. It has been 
suggested that lithium diffusivity is faster in the (2 x 1) channels than in 
(1 x 1) channels [lo]. Hence, lithium diffusivity should decrease as the 
number of (2 x 1) channels decreases, which agrees with the data shown 
in figure 1. A similar trend is also observed in y-MnO, and P-Mn02 
produced from acid digestion of LiMn,O, (filled symbols). 

A second observation from figure 1 is that two of the data points for 
&Mn02, although from different research groups [5,6], are in excellent 
agreement with each other. However, there is a significant difference in D 

(about a factor of 25 to 30) between these data and the third data point 
(from Guyomard and Tarascon [4]). Reasons for this difference are not yet 
known. Since lithium diffusivity can be affected by impurities, it may be 
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that material variations account for this difference [8]. However, the 
impurities and concentration for the three different materials were not 
given, so this suggestion cannot be confirmed. 

The data in figure 1 can be used to determine whether (at room tempera- 
ture) an increase in the discharge rate in Li/Mn02 batteries is likely to 
occur as a result of a switch from y/p-Mn02 to a-Mn02 cathodes. The 
currently used y/P-Mn02 is a combination of y-Mn02 and P-Mn02. 
Diffusivity D for y/P-Mn02 (open symbols) is about 1 x 10ml’ cm’/s. 
(This value is based on a 50 vol.%y-Mn02 and 50 vol.% P-Mn02 mixture.) 
I compare D for r//3-Mn02 (1 x lo-lo cm2/s) to two values of D for 
il-Mn02: 4 x lo-lo and 1 x 10m9 cm*/s. (I choose these two values 
because of the discrepancy in the data for&Mn02, discussed earlier.) If 
D = 4 x lo-lo cm2/s for a-Mn02, the value for y//3-Mnd2 is about 2.5~ 
higher: D = 1 x lo-lo cm2/s. Thus, according to equation (1), a decrease in 
the discharge current is predicted if a-Mn02 is used instead of y/P-Mn02 
of equal particle size. If D = 1 x 1O-9 cm2/s for il-Mn02, the value of D of 
r/P-MnO, is about 10x lower: 1 x lo-lo cm*/s. In this case, according to 
equation (1), changing from r/P-Mn02 to il-Mn02 of the same particle 
size will lead to a maximum increase in the discharge rate of about an 
order of magnitude. Unfortunately, without more experimental data for 
il-Mn02, it is impossible to determine which is the correct D value for 
a-Mn02. In any case, the results reveal that the maximum increase in 
discharge rate at room temperature that can be achieved by switching 
from y//?-Mn02 to &Mn02 of the same particle size is about an order of 
magnitude. 

A third observation from figure 1 is that y-Mn02 and P-Mn02 produced 
from acid digestion (filled symbols) have a higher lithium diffusivity than 
y-MnOZ and j?-Mn02 produced by standard commercial methods (open 
symbols). Figure 1 shows that for both y-Mn02 and /I-Mn02, the D values 
for these materials when produced by acid digestion is higher than the D 

values when they are prepared by commercial methods. Among several 
possible explanations for this observation are differences in impurities 
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and in structural water content. Since the impurities and their concentra- 
tions are not given, I cannot address this possibility. However, we know 
that the structural water content for the materials formed by acid diges- 
tion is about a factor of 10x lower than that for the materials prepared by 
commercial methods [3]. It is possible that the removal of structural water 
leads to more sites for lithium to occupy and move to and hence a higher 
D. More experimental work is required to confirm this suggestion. In any 
case, since y-Mn02 and P-Mn02 produced by acid digestion have a higher 
D than commercially prepared y-MnO-, and /I-Mn02, acid digestion may 
be a method of increasing the D in Mn02. One could speculate that 
1-Mn02 prepared from acid digestion of LiMn204 will also exhibit a 
higher D than il-Mn02 prepared by the more common electrochemical 
titration of LiMn204 (the method used to prepare the ;3-Mn02 shown in 
figure 1 [4]). At present, no low-temperature data for D in y/P-Mn02 or 
a-Mn02 exist, and hence no comparisons can be made. 

The results of the comparisons presented here suggest the following: 

(1) Switching from y/j3-Mn02 to a-MnO, of equal particle size will lead to a 
maximum increase in the discharge rate at room temperature of about an 
order of magnitude. ’ 

(2) More experimental data at both room and low temperatures are needed 
for D in y/fi-MnO:! and ;t-Mn02 before we can accurately predict whether 
an increase in discharge rate will occur as a result of switching from 
r//I-MnO, to &MnO? in the Li/MnO* system. 

(3) When formed by acid digestion, y-MnO;, and fi-MnO, have a higher D 
and hence a faster discharge rate than when produced by commercial 
methods. This difference may be a result of the lower structural water 
content in materials formed by acid digestion. 
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